JK-1020植物光合作用测定仪
一、光合测定基本原理
地球上的植物均是以光合作用为基本物质生产过程,特别是人类赖以生存的粮食生产过程95%以上的物质均是通过作物将空气中CO2和根部吸收的水分,在太阳光所提供的能量和叶片的叶绿体中合成的有机物质,这种植物将CO2和水合成有机物质放出氧气的过程称为光合作用。如何测定出光合作用的速率,对广大农业科技者和从事植物类研究人员是十分重要的。
测定光合速率的方法很多,但应用最多是根据CO2的吸收测定光合速率。本机利用快速准确的红外线CO2气体分析仪法。
1、CO2测定
红外线气体分析根据由异原子组成的具有偶极矩的气体分子如CO2,CO,H2O,SO2,CH3,NH4,NO等在2.5~25um的红外光区都有特异的吸收带,CO2在中段红外区的吸收带有4处,其中4.26um的吸收带最强,而且不与H2O相互干扰。红外线CO2分析就是通过检测CO2对4.26um光谱的吸收来测定光合作用过程中CO2的变化量。因为CO2吸收的4.26um红外光能与其吸收系数(K)、气体的浓度(C)和测定的气室长度(L)有关,并服从比尔一兰伯特定律:E=Eoe-KCL
因为测定仪在设计过程中将确定了Eo(初级始发能量)和L(气室长度),-K,e为常数,而E(测定未端的能量)就有了与C(被测气体浓度)的对应关系,通过测定E就可测定出CO2浓度。
红外线CO2分析的优点:①灵敏度高,可以测定到1.0、0.5甚至0.1uml.mlo-l(即ppm)的CO2浓度;②反应快速,响应时间短,可测定出光合速率瞬时变化;③易实现自动化,智能化的测定。
光合测定仪采用单片机的智能管理技术,除了监测光合作用过程中的CO2变化外,还测定相应的光合有效辐射(PAR)、温度,并根据这些测定参数自动计算出相应的光合速率(Pn),水分利用率(We),气孔导度(Cleaf)。
2、温度测定原理
温度传感器采用德国贺氏高精度PT100传感器,测温电路采用三线制经典恒流源测温电路。3、光合有效辐射测定
光合有效辐射(PAR)是指植物吸收并参与光化学反应的太阳辐射光谱成份。一般光谱范围多采用400~760nm,该技术原理为:PAR测定采用多层叠加滤光和光敏半导技术,即采用硅光电二极管,利用光生伏特效应将光能转化为电能,在光照照射下能在P区和N区之间形成光生电动势,把PN结连接起,电路中就有电流流过,电流大小与光照强度成相关性。其优点是稳定性好和重现性好,动态范围宽,温湿度特性优良和几乎没有疲劳特性。硅光电二极管的短路电流与光照强度有较好的线性关系,当选择适当的滤光片对光谱进行选择,则硅光电二极管输出电流即和所选光谱的光强呈线性关系。具体电路为:
D1为硅光电二极管,Q1为电流电压转换电路,将光强转换为0-2.5V输出电压,送到AD电路进行模数转换。
二、光合仪工作原理及系统结构
1、工作原理
光合测定仪是利用先进的单片机技术对相应的CO2浓度、温度和光合有效辐射(PAR)传感器信号进行采集,经数据处理计算出光合速率(Pn)同时可显示、数据存储的
2、系统结构
系统主要由二个部分构成,①叶室;其功能将被测叶片夹住,形成固定被测空间和取样,同时内装有温度传感器,在叶室柄上方有光合有效辐射传感器(PAR)。在测定光合作用光合
有效辐射的变化量(0-2500µmolm-2•s-1 )和温度变化量(0-50℃),各传感器相对应的均是标准电压(0-5V)供处理中心,叶室通过叶室信号电缆和气路管与主机相连,进行相应的开路或闭路测定;②主机机箱内装有二氧化碳分析系统和处理中心,前者主要测定光合作用过程中CO2的浓度变化,并将CO2浓度变化量(O-1500ppm)转化为AD电路所需的标准电压讯号(0-8.4V);处理中心将输入的3种模拟量(CO2、PAR、T)进行多路选择、模数(A/D)转换、数据采集与滤波,计算并将测定结果显示和存贮并与计算机通讯。
三、光合测定仪的性能及用途
光合测定仪主要用于农作物、果蔬、牧草等植物的光合速率的测定,该仪器具有以下特点:
特殊配置:选用先进的单片机对测定过程中各路变化的信号进行自动采集和处理,配置全点阵液晶宽屏显示器,可实现多信息的菜单式显示和光标引导下的简便操作;可进行数据存储。
使用方便:体积小,重量轻,可随身携带,单人操作,任意移动,气路和电路连接明确,操
作方式及测定,叶室为自动弹启和锁紧方式,测定时装卸叶片十分方便。
性能优良:测量的稳定性、精度、重视性和时间响应都非常好,同时测定光合速率(PN)、二氧化碳浓度(CO2)、光合有效辐射(PAR)和温度(T)等项指标。
适用广泛:配有不同类型的叶室、能广泛用于大田作物、果树、蔬菜、森木、牧草等多种植
物不同形状叶片的测定。配有标准化免维护锂电池,可进行交、直流两种方式供电。
技术参数:
测定项目 | 测定量程 | 精度 |
CO2 | 0-1500PPm | ±3PPm |
TC(空气温度) | 0-50℃ | ±0.5℃ |
TL(叶片温度) | 0-50℃ | ±0.5℃ |
RH(叶室湿度) | 0-100% | ±2% |
胞间CO2 | 0-1500PPm | |
PAR | 0-2500µmolm-2•s-1 | ±5µmolm-2•s-1 |